Authors:
(1) Dorian W. P. Amaral, Department of Physics and Astronomy, Rice University and These authors contributed approximately equally to this work;
(2) Mudit Jain, Department of Physics and Astronomy, Rice University, Theoretical Particle Physics and Cosmology, King’s College London and These authors contributed approximately equally to this work;
(3) Mustafa A. Amin, Department of Physics and Astronomy, Rice University;
(4) Christopher Tunnell, Department of Physics and Astronomy, Rice University.
Table of Links
2 Calculating the Stochastic Wave Vector Dark Matter Signal
3 Statistical Analysis and 3.1 Signal Likelihood
4 Application to Accelerometer Studies
4.1 Recasting Generalised Limits onto B − L Dark Matter
6 Conclusions, Acknowledgments, and References
A Equipartition between Longitudinal and Transverse Modes
B Derivation of Marginal Likelihood with Stochastic Field Amplitude
D The Case of the Gradient of a Scalar
B Derivation of Marginal Likelihood with Stochastic Field Amplitude
The full signal in time space is given by
Using the series representation of the Bessel function, together with Gamma function identities, the 5 random variables can be integrated out analytically. We arrive at the following marginalized (and normalized) likelihood:
where
This likelihood can be split into three individual likelihoods for the sum/difference peaks and the Compton peak, as given in Eq. (3.2). The form of the likelihoods for the sum and difference peaks is equivalent.