Authors:
(1) Jongmin Lee, Department of Mathematical Science, Seoul National University;
(2) Ernest K. Ryu, Department of Mathematical Science, Seoul National University and Interdisciplinary Program in Artificial Intelligence, Seoul National University.
1.1 Notations and preliminaries
2.1 Accelerated rate for Bellman consistency operator
2.2 Accelerated rate for Bellman optimality opera
5 Approximate Anchored Value Iteration
6 Gauss–Seidel Anchored Value Iteration
7 Conclusion, Acknowledgments and Disclosure of Funding and References
4 Complexity lower bound
We now present a complexity lower bound establishing optimality of Anc-VI.
The so-called “span condition” of Theorem 5 is arguably very natural and is satisfied by standard VI and Anc-VI. The span condition is commonly used in the construction of complexity lower bounds on first-order optimization methods [13, 14, 23, 25, 59, 65] and has been used in the prior state-ofthe-art lower bound for standard VI [37, Theorem 3]. However, designing an algorithm that breaks the lower bound of Theorem 5 by violating the span condition remains a possibility. In optimization theory, there is precedence of lower bounds being broken by violating seemingly natural and minute conditions [35, 40, 98].